75 research outputs found

    Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines

    Get PDF
    Future e-mobility calls for efficient electrical machines. For different areas of operation, these machines have to satisfy certain desired properties that often depend on their design. Here we investigate the use of multipatch Isogeometric Analysis (IgA) for the simulation and shape optimization of the electrical machines. In order to get fast simulation and optimization results, we use non-overlapping domain decomposition (DD) methods to solve the large systems of algebraic equations arising from the IgA discretization of underlying partial differential equations. The DD is naturally related to the multipatch representation of the computational domain, and provides the framework for the parallelization of the DD solvers

    An overview of Geometry plus Simulation Modules

    Get PDF
    International audienceWe give an overview of the open-source library "G+Smo". G+Smo is a C++ library that brings together mathematical tools for geometric design and numerical simulation. It implements the relatively new paradigm of isogeometric analysis, which suggests the use of a unified framework in the design and analysis pipeline. G+Smo is an object-oriented, cross-platform, fully templated library and follows the generic programming principle, with a focus on both efficiency and ease of use. The library aims at providing access to high quality, open-source software to the community of numerical simulation and beyond

    Characterization of bivariate hierarchical quartic box splines on a three-directional grid

    Get PDF
    International audienceWe consider the adaptive refinement of bivariate quartic C 2-smooth box spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quar-tic polynomials, which will be called the space of special quartics. Given a bounded domain Ω ⊂ R 2 and finite sequence (G ℓ) ℓ=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells from all levels such that their union covers the entire domain. Using a suitable selection procedure allows to define a basis spanning the hierarchical box spline space. The paper derives a characterization of this space. Under certain mild assumptions on the hierarchical grid, the hierarchical spline space is shown to contain all C 2-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this case we can give an affirmative answer to the completeness questions for the hierarchical box spline basis

    Singular Zeros of Polynomial Systems

    Get PDF
    International audienceSingular zeros of systems of polynomial equations constitute a bottleneck when it comes to computing, since several methods relying on the regularity of the Jacobian matrix of the system do not apply when the latter has a non-trivial kernel. Therefore they require special treatment. The algebraic information regarding an isolated singularity can be captured by a finite, local basis of differentials expressing the multiplicity structure of the point. In the present article, we review some available algebraic techniques for extracting this information from a polynomial ideal. The algorithms for extracting the, so called, dual basis of the singularity are based on matrix-kernel computations, which can be carried out numerically, starting from an approximation of the zero in question. The next step after obtaining the multiplicity structure is to deflate the root, that is, construct a new system in which the singularity is eliminated. Having a deflated system allows to refine the solution fast and to high accuracy, since the Jacobian matrix is regular and all the usual machinery, e.g. Newton's method or existence and unicity criteria may be applied. Standard verification methods, based e.g. on interval arithmetic and a fixed point theorem, can then be employed to certify that there exists a unique perturbed system with a singular root in the domain

    A Subdivision Approach to Planar Semi-algebraic Sets

    Get PDF
    International audienceSemi-algebraic sets occur naturally when dealing with implicit models and boolean operations between them. In this work we present an algorithm to efficiently and in a certified way compute the connected components of semi-algebraic sets given by intersection or union of conjunctions of bi-variate equalities and inequalities. For any given precision, this algorithm can also provide a polygonal and isotopic approximation of the exact set. The idea is to localize the boundary curves by subdividing the space and then deduce their shape within small enough cells using only boundary information. Then a systematic traversal of the boundary curve graph yields polygonal regions isotopic to the connected components of the semi-algebraic set. Space subdivision is supported by a kd-tree structure and localization is done using Bernstein representation. We conclude by demonstrating our C++ implementation in the CAS Mathemagix

    Continued Fraction Expansion of Real Roots of Polynomial Systems

    Get PDF
    We present a new algorithm for isolating the real roots of a system of multivariate polynomials, given in the monomial basis. It is inspired by existing subdivision methods in the Bernstein basis; it can be seen as generalization of the univariate continued fraction algorithm or alternatively as a fully analog of Bernstein subdivision in the monomial basis. The representation of the subdivided domains is done through homographies, which allows us to use only integer arithmetic and to treat efficiently unbounded regions. We use univariate bounding functions, projection and preconditionning techniques to reduce the domain of search. The resulting boxes have optimized rational coordinates, corresponding to the first terms of the continued fraction expansion of the real roots. An extension of Vincent's theorem to multivariate polynomials is proved and used for the termination of the algorithm. New complexity bounds are provided for a simplified version of the algorithm. Examples computed with a preliminary C++ implementation illustrate the approach.Comment: 10 page

    Resultants and Discriminants for Bivariate Tensor-product Polynomials

    Get PDF
    International audienceOptimal resultant formulas have been systematically constructed mostly for unmixed polynomial systems, that is, systems of polynomials which all have the same support. However , such a condition is restrictive, since mixed systems of equations arise frequently in practical problems. We present a square, Koszul-type matrix expressing the resultant of arbitrary (mixed) bivariate tensor-product systems. The formula generalizes the classical Sylvester matrix of two univariate polynomials, since it expresses a map of degree one, that is, the entries of the matrix are simply coefficients of the input polynomials. Interestingly, the matrix expresses a primal-dual multiplication map, that is, the tensor product of a univariate multiplication map with a map expressing derivation in a dual space. Moreover, for tensor-product systems with more than two (affine) variables, we prove an impossibility result: no universal degree-one formulas are possible, unless the system is unmixed. We present applications of the new construction in the computation of discriminants and mixed discriminants as well as in solving systems of bivariate polynomials with tensor-product structure
    • …
    corecore